147 research outputs found

    Asymmetry distributions and mass effects in dijet events at a polarized HERA

    Get PDF
    The asymmetry distributions for several kinematic variables are considered for finding a systematic way to maximize the signal for the extraction of the polarized gluon density. The relevance of mass effects for the corresponding dijet cross section is discussed and the different approximations for including mass effects are compared. We also compare via the programs Pepsi and Mepjet two different Monte Carlo (MC) approaches for simulating the expected signal in the dijet asymmetry at a polarized HERA.Comment: 18 pages, LaTeX, minor stylistic changes for Z.Phys.

    Testing J/psi Production and Decay Properties in Hadronic Collisions

    Full text link
    The polar and azimuthal angular distributions for the lepton pair arising from the decay of a J/psi meson produced at transverse momentum p_T balanced by a photon [or gluon] in hadronic collisions are calculated in the color singlet model (CSM). It is shown that the general structure of the decay lepton distribution is controlled by four invariant structure functions, which are functions of the transverse momentum and the rapidity of the J/psi. We found that two of these structure functions [the longitudinal and transverse interference structure functions] are identical in the CSM. Analytical and numerical results are given in the Collins-Soper and in the Gottfried-Jackson frame. We present a Monte Carlo study of the effect of acceptance cuts applied to the leptons and the photon for J/psi+ gamma production at the Tevatron.Comment: 22 pages (LaTeX) plus 11 postscript figures, MAD/PH/822, YUMS94-11. Figures are available from the authors or as a compressed tar file via anonymous ftp at phenom.physics.wisc.edu in directory {}~pub/preprints/madph-94-822-figs.tar.

    Thermodynamics in the Limit of Irreversible Reactions

    Full text link
    For many real physico-chemical complex systems detailed mechanism includes both reversible and irreversible reactions. Such systems are typical in homogeneous combustion and heterogeneous catalytic oxidation. Most complex enzyme reactions include irreversible steps. The classical thermodynamics has no limit for irreversible reactions whereas the kinetic equations may have such a limit. We represent the systems with irreversible reactions as the limits of the fully reversible systems when some of the equilibrium concentrations tend to zero. The structure of the limit reaction system crucially depends on the relative rates of this tendency to zero. We study the dynamics of the limit system and describe its limit behavior as tt \to \infty. If the reversible systems obey the principle of detailed balance then the limit system with some irreversible reactions must satisfy the {\em extended principle of detailed balance}. It is formulated and proven in the form of two conditions: (i) the reversible part satisfies the principle of detailed balance and (ii) the convex hull of the stoichiometric vectors of the irreversible reactions does not intersect the linear span of the stoichiometric vectors of the reversible reactions. These conditions imply the existence of the global Lyapunov functionals and alow an algebraic description of the limit behavior. The thermodynamic theory of the irreversible limit of reversible reactions is illustrated by the analysis of hydrogen combustion.Comment: 23 pages, extended version with fig

    Computational diagnosis and risk evaluation for canine lymphoma

    Full text link
    The canine lymphoma blood test detects the levels of two biomarkers, the acute phase proteins (C-Reactive Protein and Haptoglobin). This test can be used for diagnostics, for screening, and for remission monitoring as well. We analyze clinical data, test various machine learning methods and select the best approach to these problems. Three family of methods, decision trees, kNN (including advanced and adaptive kNN) and probability density evaluation with radial basis functions, are used for classification and risk estimation. Several pre-processing approaches were implemented and compared. The best of them are used to create the diagnostic system. For the differential diagnosis the best solution gives the sensitivity and specificity of 83.5% and 77%, respectively (using three input features, CRP, Haptoglobin and standard clinical symptom). For the screening task, the decision tree method provides the best result, with sensitivity and specificity of 81.4% and >99%, respectively (using the same input features). If the clinical symptoms (Lymphadenopathy) are considered as unknown then a decision tree with CRP and Hapt only provides sensitivity 69% and specificity 83.5%. The lymphoma risk evaluation problem is formulated and solved. The best models are selected as the system for computational lymphoma diagnosis and evaluation the risk of lymphoma as well. These methods are implemented into a special web-accessed software and are applied to problem of monitoring dogs with lymphoma after treatment. It detects recurrence of lymphoma up to two months prior to the appearance of clinical signs. The risk map visualisation provides a friendly tool for explanatory data analysis.Comment: 24 pages, 86 references in the bibliography, Significantly extended version with review of lymphoma biomarkers and data mining methods (Three new sections are added: 1.1. Biomarkers for canine lymphoma, 1.2. Acute phase proteins as lymphoma biomarkers and 3.1. Data mining methods for biomarker cancer diagnosis. Flowcharts of data analysis are included as supplementary material (20 pages

    Multi-jet cross sections in deep inelastic scattering at next-to-leading order

    Full text link
    We present the perturbative prediction for three-jet production cross section in DIS at the NLO accuracy. We study the dependence on the renormalization and factorization scales of exclusive three-jet cross section. The perturbative prediction for the three-jet differential distribution as a function of the momentum transfer is compared to the corresponding data obtained by the H1 collaboration at HERA.Comment: 5 pages, 3 figure

    Combining QCD Matrix Elements at Next-to-Leading Order with Parton Showers in Electroproduction

    Full text link
    We present a method to combine next-to-leading order (NLO) matrix elements in QCD with leading logarithmic parton showers by applying a suitably modified version of the phase-space-slicing method. The method consists of subsuming the NLO corrections into a scale-dependent phase-space-slicing parameter, which is then automatically adjusted to cut out the leading order, virtual, soft and collinear contributions in the matrix element calculation. In this way a positive NLO weight is obtained, which can be redistributed by a parton shower algortihm. As an example, we display the method for single-jet inclusive cross sections at O(alpha_s) in electroproduction. We numerically compare the modified version of the phase-space-slicing method with the standard approach and find very good agreement on the percent level.Comment: 21 pages, 2 eps figures. Revised section 2. To appear in PR

    Azimuthal correlation in DIS

    Get PDF
    We introduce the azimuthal correlation for the deep inelastic scattering process. We present the QCD prediction to the level of next-to-leading log resummation, matching to the fixed order prediction. We also estimate the leading non-perturbative power correction. The observable is compared with the energy-energy correlation in e+e- annihilation, on which it is modelled. The effects of the resummation and of the leading power correction are both quite large. It would therefore be particularly instructive to study this observable experimentally.Comment: 33 pages, 4 figures, JHEP class included. One figure and some clarifications adde
    corecore